# 1-3: Polynomial Operations

ID: hupud-vamuk Lindsey Feldman, BP BY-NC
Subject: Math (General)
Assignment Type: Homework

Homework | 19 questions (16 autogradable) | 19 points

### Define terms in #1-3. Simplify completely and leave in standard form for #4-14. Classify the polynomial for #15-19.

1.

A polynomial is

2.

A coefficient is

3.

The degree of a polynomial is

4.

(9﻿$x^{2}$﻿-4﻿$x$﻿+8)+(12﻿$x^{2}$﻿-6﻿$x$﻿-3)

5.

(﻿$x$﻿-2﻿$x^{3}$﻿+8-7﻿$x^{2}$﻿)-(8+5﻿$x$﻿-3﻿$x^{3}$﻿)

6.

(8﻿$x^{3}y^{2}$﻿)(-3﻿$x^{2}y^{3}$﻿)

7.

2﻿$x^{3}$﻿(9﻿$x^{2}$﻿+5﻿$y$﻿)

8.

-4﻿$x^{2}y$﻿(﻿$x^{2}$﻿+7﻿$xy$﻿-6﻿$y^{3}$﻿)

9.

(4﻿$x$﻿-3)(3﻿$x$﻿-5)

10.

(﻿$x$﻿+3﻿$)^{2}$﻿

11.

(﻿$x$﻿-2)(﻿$x^{2}$﻿-﻿$x$﻿+3)

12.

(2﻿$x$﻿-5)(5﻿$x^{2}$﻿+4﻿$x$﻿+7)

13.

(﻿$x$﻿+10)(3﻿$x$﻿-7)-(﻿$x$﻿-4﻿$)^{2}$﻿

14.

4﻿$x[$﻿(2﻿$x$﻿+9)(2﻿$x$﻿-9)﻿$]$﻿

15.

Classify the polynomial by degree and number of terms (i.e. first degree trinomial or fourth degree monomial).

﻿$-9x^{2}-7x+3$﻿

16.

Classify the polynomial by degree and number of terms (i.e. first degree trinomial or fourth degree monomial).

﻿$5-6x^{3}$﻿

17.

Classify the polynomial by degree and number of terms (i.e. first degree trinomial or fourth degree monomial).

﻿$-4$﻿

18.

Classify the polynomial by degree and number of terms (i.e. first degree trinomial or fourth degree monomial).

﻿$5x-10$﻿

19.

Classify the polynomial by degree and number of terms (i.e. first degree trinomial or fourth degree monomial).

﻿$-6x^{3}+8x-2$﻿