# 1-3: Polynomial Operations

ID: hupud-vamuk Lindsey Feldman, BP BY-NC
Subject: Math (General)

19 questions

# 1-3: Polynomial Operations

Classroom:
Due:
Student Name:
Date Submitted:
##### Define terms in #1-3. Simplify completely and leave in standard form for #4-14. Classify the polynomial for #15-19.

1) A polynomial is

2) A coefficient is

3) The degree of a polynomial is

4) (9﻿$x^{2}$﻿-4﻿$x$﻿+8)+(12﻿$x^{2}$﻿-6﻿$x$﻿-3)

Show Work

5) (﻿$x$﻿-2﻿$x^{3}$﻿+8-7﻿$x^{2}$﻿)-(8+5﻿$x$﻿-3﻿$x^{3}$﻿)

Show Work

6) (8﻿$x^{3}y^{2}$﻿)(-3﻿$x^{2}y^{3}$﻿)

Show Work

7) 2﻿$x^{3}$﻿(9﻿$x^{2}$﻿+5﻿$y$﻿)

Show Work

8) -4﻿$x^{2}y$﻿(﻿$x^{2}$﻿+7﻿$xy$﻿-6﻿$y^{3}$﻿)

Show Work

9) (4﻿$x$﻿-3)(3﻿$x$﻿-5)

Show Work

10) (﻿$x$﻿+3﻿$)^{2}$﻿

Show Work

11) (﻿$x$﻿-2)(﻿$x^{2}$﻿-﻿$x$﻿+3)

Show Work

12) (2﻿$x$﻿-5)(5﻿$x^{2}$﻿+4﻿$x$﻿+7)

Show Work

13) (﻿$x$﻿+10)(3﻿$x$﻿-7)-(﻿$x$﻿-4﻿$)^{2}$﻿

Show Work

14) 4﻿$x[$﻿(2﻿$x$﻿+9)(2﻿$x$﻿-9)﻿$]$﻿

Show Work

15) Classify the polynomial by degree and number of terms (i.e. first degree trinomial or fourth degree monomial).

﻿$-9x^{2}-7x+3$﻿

16) Classify the polynomial by degree and number of terms (i.e. first degree trinomial or fourth degree monomial).

﻿$5-6x^{3}$﻿

17) Classify the polynomial by degree and number of terms (i.e. first degree trinomial or fourth degree monomial).

﻿$-4$﻿

18) Classify the polynomial by degree and number of terms (i.e. first degree trinomial or fourth degree monomial).

﻿$5x-10$﻿

19) Classify the polynomial by degree and number of terms (i.e. first degree trinomial or fourth degree monomial).

﻿$-6x^{3}+8x-2$﻿